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Abstract. We consider extreme type-II superconductors modeled by the Ginzburg–Landau

energy with a pinning term aε(x), which we assume to be a bounded measurable function

such that b ≤ aε(x) ≤ 1 for some constant b > 0. A crucial feature of this type of super-

conductors is the occurrence of vortices, which appear above the so-called first critical field

Hc1 . In this paper we estimate this value and characterize the behavior of the Meissner

solution, the unique vortexless configuration that globally minimizes the energy below Hc1 .

In addition, we show that beyond this value, for applied fields whose strength is slightly

below the so-called superheating field Hsh, there exists a unique Meissner-type solution that

locally minimizes the energy.

1. Introduction

1.1. The problem and brief state of the art. Superconductors are materials that can
exhibit a complete loss of electrical resistance when cooled below a critical temperature (typ-
ically very low). Superconductivity was discovered by Kamerlingh Onnes in 1911. The two
most striking features of it are the possibility of permanent superconducting currents and the
expulsion of applied magnetic fields, which in turn leads to superconducting levitation. In
type-II superconductors, the normal and superconductivity phases may coexist in the mate-
rial. Indeed, a key physical feature of type-II superconductivity is the occurrence of vortices
(similar to those in fluid mechanics but quantized), in the presence of an applied magnetic
field. In these regions, the external field penetrates the material, and the superconductivity
is lost.

These vortices may move because of internal interactions and external forces. Their mo-
tion generates an electric field that dissipates energy and, in turn, generates an electrical
resistance, thus losing superconductivity in the material. One way to control the motion of
the vortices is to introduce inhomogeneities into the material, which provide pinning sites
for the vortices. We refer to [CR95,CDG96,CR97,DD02] and the references therein for more
details of the physics of pinned superconductors.

The behavior of pinned superconductors is modeled by the famous Ginzburg–Landau
model of superconductivity (with pinning), which is defined by

(1.1) GLε(u,A) :=
1

2

∫
Ω

|∇Au|2 +
(aε(x)− |u|2)2

2ε2
+ |h− hex|2.
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Here

• Ω ⊂ R2 is a smooth, bounded, and simply connected domain.
• u : Ω → C is the order parameter. Its squared modulus (the density of Cooper pairs of
superconducting electrons in the Bardeen–Cooper–Schrieffer (BCS) quantum theory
[BCS57]) indicates the local state (normal or superconducting) of the material.

• A : Ω → R2 is the electromagnetic vector potential of the induced magnetic field
h = curlA := ∂x1A2 − ∂x2A1.

• ∇A denotes the covariant gradient ∇− iA.
• hex > 0 is a constant that represents the intensity of the external magnetic field in
the direction perpendicular to Ω.

• ε > 0 is the inverse of the Ginzburg–Landau parameter usually denoted κ, a nondi-
mensional parameter depending only on the material. We will be interested in the
regime of small ε, corresponding to extreme type-II superconductors.

• aε is a function that accounts for inhomogeneities in the material. We will assume that
aε ∈ L∞(Ω) and that it takes values in [b, 1], where b ∈ (0, 1) is a constant independent
of ε. The regions where aε = 1 correspond to sites without inhomogeneities (we also
say that there is no pinning in these regions).

Both the mathematics and physics literature on the effect of pinning in the Ginzburg–
Landau model of superconductivity is quite extensive. Without aiming for a full bibliographic
review, we next mention a few of the pinning-type functions that have been considered in
the literature:

• Models where aε is smooth were studied in [ASS01], where, in addition to our as-
sumption, aε homogenizes in the sense of H-convergence as ε→ 0, in [ABP03], where
the pinning term has a finite number of zeroes, and in [AAB05], where the pinning
term is radial and is allowed to be negative.

• Models where aε is a step function taking only two values (say b and 1) were stud-
ied in [LM99,DSMM11,DSM11,DS13,DS15] in the pinned Ginzburg–Landau model
without external magnetic field, in [Kac10,AK09], where Ω = B(0, 1) and a−1

ε (b) is
an annulus, and in [DS21], where the region a−1

ε (b) is periodic and shrinks as ε→ 0.
• A model where aε is an oscillating periodic function under the effect of a random
ergodic stationary action was studied in [DSRS23].

It is worth pointing out that, in some of these models, we expect the minima of aε to be
pinning sites for the vortices. There is computational evidence in [DGP95,CDG95] and a
proof in [ST04] for hex = 0 and a sufficiently small and smooth pinning term.

The homogeneous case aε ≡ 1 in Ω corresponds to the celebrated Ginzburg–Landau func-
tional proposed by Ginzburg and Landau [GL50]. This model has been extensively stud-
ied by analysts after the seminal work [BBH94] on the functional without magnetic field
(hex = A = 0). We refer to the classical book [SS07] for an extensive mathematical re-
view of the model with magnetic field and to [Tin96] for a more physics-oriented study of
superconductivity and vortex pinning.

An important feature of the Ginzburg–Landau model is that all the physically meaning-
ful quantities are gauge-invariant, which means that they are preserved under the gauge
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transformation

(u,A) → (ueiϕ, A+∇ϕ).

The energy GLε and the free energy with (or without) weight ηε : Ω → R defined via

(1.2) Fε,ηε(u,A) =
1

2

∫
Ω

η2ε |∇Au|2 + η4ε
(1− |u|2)2

2ε2
+ | curlA|2

are gauge-invariant, as well as the induced magnetic field h, the density of Cooper-pairs of
electrons |u|, the superconducting current ⟨iu ,∇Au⟩ and the vorticity measure, defined by

µ(u,A) = curl⟨iu ,∇Au⟩+ h,

where ⟨· , ·⟩ is the scalar product of C identified with R2, that is, ⟨z , w⟩ = zw+zw
2

. We will
denote by Fε(u,A) the free energy without weight (that is, when ηε ≡ 1 in Ω). One particular
gauge-choice, so called Coulomb gauge, is the one for which

(1.3)

{
− divA = 0 in Ω
A · ν = 0 on ∂Ω.

It is well known that as the intensity of the external magnetic field hex is tuned, type-
II superconductors undergo several phase transitions. There are three main critical values
Hc1 , Hc2 and Hc3 for hex, called (main) critical fields, where phase transitions occur: When
hex < Hc1 , the material is everywhere in its superconducting phase, that is, |u| is uniformly
close to 1, and the applied field is expelled by the material due to the occurrence of su-
percurrents near ∂Ω. This phenomenon is known as Meissner effect. When hex ≥ Hc1 ,
the external magnetic field penetrates the material and vortices start to appear, and as hex
increases, so does the number of vortices. Near Hc2 , superconductivity is lost in the bulk of
the material and when Hc2 < hex < Hc3 , superconductivity remains only near the boundary.
When hex > Hc3 , superconductivity is lost, as the external magnetic field has completely
penetrated the material.

1.2. Main results. A main purpose of this paper is to provide a precise approximation of
the Meissner state (or configuration), that is, the unique (modulo gauge-invariance) solution
of the Ginzburg–Landau equations without vortices, which, in turn, allows us for providing
an estimate for the main order of the first critical field, which is of order O(| log ε|), and to
show that the Meissner solution is stable for values of the intensity of the applied field close
to the so-called superheating field, which is of order O(ε−1).

Before precisely stating our main results, let us introduce the configuration

(1.4) (ρε, hexA
0
ε) :=

(
ρε, hex

−∇⊥ξε
ρ2ε

)
,

which corresponds to our approximation of the Meissner state. Here

• ρε is the unique positive real-valued minimizer in H1(Ω,C) of the pinned Ginzburg–
Landau energy functional without magnetic field

(1.5) Eε(u) :=
1

2

∫
Ω

|∇u|2 + (aε − |u|2)2

2ε2
.
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It satisfies the Euler–Lagrange equation

(1.6)

 −∆ρε =
ρε(aε − ρ2ε)

ε2
in Ω

∂ρε
∂ν

= 0 on ∂Ω,

which combined with the maximum principle, yields
√
b ≤ ρε ≤ 1. In addition, by

taking a constant as an energy competitor, we find the a priori bound

(1.7) Eε(ρε) ≤
C

ε2
.

• ξε is the unique solution in H1
0 (Ω) to

(1.8)

 − div

(
∇ξε
ρ2ε

)
+ ξε = 1 in Ω

ξε = 0 on ∂Ω.

Since
√
b ≤ ρε ≤ 1, the maximum principle yields 0 ≤ ξε ≤ 1. Furthermore,

observe that the differential operator associated with ξε is uniformly elliptic. The
classical result of Meyers [Mey63, Theorem 1.1] thus ensures that ξε ∈ W 1,p0(Ω), for
some p0 > 2 that does not depend on ε and, more importantly, that there exists
C = C(Ω, b) > 0 such that

∥∇ξε∥Lp0 (Ω) ≤ C.

Quite surprisingly, the special structure of the elliptic problem (1.8) implies that
the previous estimate holds with p0 = ∞ (see Proposition 2.8), which will play a
fundamental role throughout the article.

A crucial result concerning this special configuration is the following energy splitting.

Proposition 1.1. Given any configuration (u,A) ∈ H1(Ω,C)×H1(Ω,R2), letting (u,A) be
defined through the relation (u,A) = (ρεu,A+ hexA

0
ε), we have

(1.9) GLε (u,A) = GLε

(
ρε, hexA

0
ε

)
+ Fε,ρε(u,A)− hex

∫
Ω

µ(u,A)ξε +R0,

where

(1.10) R0 :=
h2ex
2

∫
Ω

|∇ξε|2

ρ2ε

(
|u|2 − 1

)
.

Let us remark that R0 = R0(ε) is a term that is negligible in the regime of hex that we are
interested in. The first term in the RHS of (1.9) captures, with high precision, the minimal
energy among configurations that do not have vortices. More precisely, we have that

GLε

(
ρε, hexA

0
ε

)
= Eε(ρε) + h2exJε(A

0
ε), where Jε(A

0
ε) =

1

2

∫
Ω

ρ2ε|A0
ε|2 + | curlA0

ε − 1|2.

Notice that Eε(ρε) corresponds to the cost “enforced” by the potential term in (1.1), which is
captured by the fact that ρ2ε ≈ aε, while the later term h2exJε(A

0
ε) corresponds to the energy

cost produced by the presence of the external field.
Let us also observe that, since u0ε = ρε ≥

√
b > 0 (see Proposition 2.1) u and u have

the same vortices and µ(u,A) ≈ µ(u,A). For this reason, the second term in the RHS of
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(1.9) can be thought of as the energetic cost of the vortices, while the third term is the
magnetic gain due to the vortices. Hence, the occurrence of vortices strongly depends on the
sign of Fε,ρε(u,A)− hex

∫
Ω
µ(u,A)ξε. We refer the reader to Section 3.1 for a more detailed

(heuristic) discussion.
It is worth mentioning that this splitting was strongly prompted by [BR95, LM99, SS07,

Kac10].

We are now ready to state our first result, which concerns an estimate of the main order
of the first critical field Hc1 . Recall that the first critical field is (rigorously) defined by the
fact that below this value, global minimizers of (1.1) do not have vortices, while they do for
applied fields whose strength is greater than Hc1 . Letting

(1.11) Hε
c1
:=

| log ε|
2maxΩ ψε

,

where ψε =
ξε
ρ2ε
, we have the following result.

Theorem 1.1. There exist ε0 > 0 and K0 > 0 such that, for any ε < ε0 and any hex ≤ Hε
c1
−

K0 log | log ε|, the global minimizers (u,A) of GLε in H1(Ω,C) × H1(Ω,R2) are vortexless
configurations such that, letting (u,A) = (ρ−1

ε u,A− hexA
0
ε), as ε→ 0, we have

(1) ∥1− |u|∥L∞(Ω,C) = o(1).

(2) ∥µ(u,A)∥(C0,1
0 (Ω))

∗ = o(1).

(3) |GLε(u,A)−GLε(ρε, hexA
0
ε)| = o(1).

This result characterizes the behavior of global minimizers below Hε
c1
. The next result

provides a characterization above this value.

Theorem 1.2. Assume [ρ2ε]C0,α(Ω) ≤ | log ε|m for some m > 0 and α ∈ (0, 1], where [ · ]C0,α(Ω)

denotes the Hölder seminorm. Then, there exist ε0 > 0 and K0 > 0 such that, for any
ε < ε0 and any hex such that Hε

c1
+K0 log | log ε| ≤ hex ≤ | log ε|N for some N ≥ 2, the global

minimizers (u,A) of GLε in H1(Ω,C)×H1(Ω,R2) do have vortices.

Thus, under the assumptions of the previous two theorems, we conclude that

Hc1 = Hε
c1
+O(log | log ε|).

This in particular generalizes the estimate on the first critical field found in [Kac10], where,
as explained above, Ω is a ball and the pinning term is radial. It is also worth remarking
that, without further assumptions on aε, it is not possible to reduce the error term in the
estimate. In the homogeneous case aε ≡ 1 in Ω, it is well known (see [SS00, SS07]) that
Hc1 = C(Ω)| log ε| + o(1) as ε → 0. However, in [DS21] Dos Santos showed that, under the
assumption on aε explained above, the expansion of the first critical field contains a term of
the form C(Ω, b) log | log ε|.

Remark 1.1. Since ρ2ε ∈ [b, 1] and ξε ∈ [0, 1], we have

0 < max
Ω

ξε ≤ max
Ω

ψε ≤ b−1max
Ω

ξε ≤ b−1 < +∞.

Moreover, it holds that lim infε→0maxΩ ξε > 0 (see Proposition 2.9). Hence, just as in the
homogeneous case, Hε

c1
= O(| log ε|). We believe that it would be interesting to investigate

whether maxΩ ψε converges, as ε→ 0, to some special constant depending on Ω and b if one
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considers a model where aε homogenizes as ε→ 0, that is, in the spirit of the one considered
in [ASS01].

Our next results go beyond the first critical field. They show that, as in the homogeneous
case aε ≡ 1 in Ω, the Meissner state beyond Hc1 continues to be a local minimizer of the
energy, even for applied fields with intensity close to O(ε−1). We begin by presenting an
existence result.

Theorem 1.3. Let α ∈
(
0, 1

2

)
. There exists ε0 > 0 such that, for any ε < ε0 and hex <

ε−α, there exists a vortexless local minimizer (u,A) for GLε. Moreover, letting (u,A) =
(ρ−1

ε u,A− hexA
0
ε) as ε→ 0, we have

(1) ∥µ(u,A)∥(C0,1
0 (Ω))

∗ = o(1).

(2) |GL(u,A)−GL(ρε, hexA
0
ε)| = o(1).

(3) ∥1− |u|∥L∞(Ω) = o(1).

Furthermore, if (u,A) is in the Coulomb gauge, it holds that

(4) The configuration (u,A) satisfies

inf
θ∈[0,2π]

∥∥u− eiθ
∥∥
H1(Ω)

+ ∥A∥H1(Ω) = o(1).

(5) The configuration (u,A) satisfies∥∥A− hexA
0
ε

∥∥
H1(Ω)

= o(1).

Moreover, if ∥∇ρε∥L2(Ω) < ε−γ for some γ < 1− 2α, we have for any r ∈ [1, 2)

inf
θ∈[0,2π]

∥∥u− ρεe
iθ
∥∥
W 1,r(Ω)

= o(1).

Let us emphasize that this result gives a precise characterization of the behavior of the local
minimizer. As a matter of fact, it essentially shows that our approximation of the Meissner
state is almost a solution of the Ginzburg–Landau equations. As far as we know, analogous
results have only been established for the homogeneous Ginzburg–Landau functional; see
[Ser99b] (in the 2D case) and [Rom19] (in the 3D case).

Our last result concerns the uniqueness, up to a gauge transformation, of locally minimiz-
ing vortexless configurations.

Theorem 1.4. Assume Eε(ρε) ≪ 1
ε2
. Let α ∈ (0, 1) and β > 0. There exists ε0 > 0

such that for any ε < ε0, if hex ≤ ε−α then a pair (u,A) = (ρεu,A + hexA
0
ε) which locally

minimizes GLε in H1(Ω,C) × H1(Ω,R2) and satisfies Fε,ρε(u,A) < εβ, is unique up to a
gauge transformation.

Remark 1.2. The hypotheses of this theorem are verified by the vortexless local minimizer
found in Theorem 1.3. More precisely, given α ∈

(
0, 1

2

)
, the vortexless local minimizer (u,A)

given by Theorem 1.3 is such that Fε,ρε(u,A) < εβ, for some constant β > 0.

Hence, in summary, we see that for hex ≤ Hε
c1
−K log | log ε|, the unique global minimizer

of (1.1) (up to a gauge transformation) is a vortexless configuration that looks very similar

to (1.4). Beyond this value, at least up to hex = o(ε−
1
2 ), (1.1) admits a unique vortexless

local minimizer with the same behavior. Therefore, exactly as observed in the homogeneous
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Ginzburg–Landau functional, since this branch of vortexless solutions remains stable, in the
process of continuously rising hex, vortices should appear at a critical value of hex called
the superheating field Hsh instead of when getting to the first critical field Hc1 = O(| log ε|).
When reachingHsh, the Meissner configuration becomes unstable, allowing for the occurrence
of vortices. In the homogeneous case Hsh = O(ε−1); see, for instance, the classical works
[BBC94,Cha95].

Let us finally mention that two classical tools in the analysis of Ginzburg–Landau type
energies play a crucial role in this paper: the vortex ball construction and the vorticity
estimate. In this paper, we obtain a new version of the former that might be of independent
interest, which generalizes the vortex ball construction method provided in [SS11] to the
case of the weighted Ginzburg–Landau free energy (1.2); see Proposition A.3.

Outline of the paper. The rest of the paper is organized as follows. In Section 2, we
provide some preliminary results and a proof of the energy splitting (1.9). In Section 3, we
heuristically derive Hε

c1
and prove Theorem 1.1 and Theorem 1.2. In Section 4, we prove

Theorem 1.3 and Theorem 1.4. Finally, in Appendix A, we provide the new version of the
vortex ball construction method for a weighted Ginzburg–Landau energy.

Acknowledgments. This work was partially funded by ANID FONDECYT 1231593.

2. Preliminaries and Energy Splitting

2.1. The (weighted) Ginzburg–Landau equations. The Euler–Lagrange equations as-
sociated to GLε are

(2.1)


−(∇A)

2u =
u(aε − |u|2)

ε2
in Ω

−∇⊥h = ⟨iu ,∇Au⟩ in Ω
h = hex on ∂Ω

∇Au · ν = 0 on ∂Ω,

where (∇A)
2 = (div−iA)(∇A) and ν is the unit normal vector pointing outward from Ω.

Observe that the maximum principle implies that any solution to (2.1) satisfies

(2.2) |u|2 ≤ max
Ω

aε ≤ 1

This can be proved following exactly the same argument used in the case of the classical
homogeneous Ginzburg–Landau energy (see for instance [SS07, Proposition 3.8]).

The Ginzburg–Landau equations (2.1) are invariant under gauge transformations. There-
fore, any solution of (2.1) can be gauge-transformed into a solution (u,A) in the Coulomb
gauge (see for instance [SS07, Proposition 3.2]). One of the advantages of this particular
choice of gauge lies in some elliptic regularity estimates, as we shall see later on.

2.2. The function ρε. The function ρε was firstly introduced by Lassoued and Mironescu
in [LM99]. Basically, it corresponds to a regularized version of

√
aε. A key tool developed

in [LM99] is the following decoupling of the energy Eε (recall (1.5))

(2.3) Eε(ρεu) = Eε(ρε) +
1

2

∫
Ω

ρ2ε|∇u|2 + ρ4ε
(1− |u|2)2

2ε2
.
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This in particular means that one can study the effect of pinning in terms of a weighted
Ginzburg–Landau energy with homogeneous potential term (1− |u|2)2.

The previous decoupling of the energy even holds if one replaces the gradient term |∇u|
by the covariant derivative |∇Au| in (1.5), that is, if one considers the energy functional

Eε(u,A) :=
1

2

∫
Ω

|∇Au|2 +
(aε − |u|2)2

2ε2
.

The following is a classical result, but we provide a proof for the sake of completeness.

Lemma 2.1. For any (u,A) ∈ H1(Ω,C)×H1(Ω,R2), we have

(2.4) Eε(ρεu,A) = Eε(ρε) +
1

2

∫
Ω

ρ2ε|∇Au|2 + ρ4ε
(1− |u|2)2

2ε
.

Proof. Expanding the square on |∇Au|2 we have

|∇Au|2 = |∇(ρεu)|2 + ρ2ε|A|2|u|2 − 2ρε⟨∇(ρεu) , iAu⟩.
Combining with (2.3), we find

Eε(ρεu) = Eε(ρε) +
1

2

∫
Ω

ρ2ε|∇u|2 + ρ4ε
(1− |u|2)2

2ε2

+ ρ2ε|A|2|u|2 − 2ρε(⟨ρε∇u, iAu⟩+ ⟨u∇ρε , iAu⟩).
Since ∇ρε and A are real-valued vector fields, ⟨u∇ρε , iAu⟩ = 0. Thus, the RHS is equal to

Eε(ρε) +
1

2

∫
Ω

ρ2ε(|∇u|2 + |A|2|u|2 − 2⟨∇u, iAu⟩) + ρ4ε
(1− |u|2)2

2ε2

= Eε(ρε) +
1

2

∫
Ω

ρ2ε|∇Au|+ ρ4ε
(1− |u|2)2

2ε2
.

□

Let us now state some regularity properties of ρε.

Proposition 2.1. We have
√
b ≤ ρε ≤ 1 and ∥∇ρε∥L∞(Ω) ≤

C
ε
for some C > 0.

Proof. The Euler–Lagrange equation associated with the energy functional (1.5) is (1.6).
Testing this equation against max{ρε(x), 1}, we are led to

0 ≤
∫
{ρε>1}

|∇ρε|2 =
∫
{ρε>1}

ρ2ε(aε − ρ2ε).

Since ρ2ε(aε − ρ2ε) < 0 when ρε > 1, we deduce that |{ρε > 1}| = 0, which means ρε ≤ 1. By

testing against min
{
ρε(x),

√
b
}
, we obtain the other inequality.

The estimate on the gradient follows from the Gagliardo–Nirenberg type inequality for
functions u ∈ H2(Ω) such that ∂u

∂ν
= 0 on ∂Ω (see [DS21, Lemma 3.2])

(2.5) ∥∇u∥2L∞(Ω) ≤ C
(
∥∆u∥L∞(Ω) + ∥u∥L∞(Ω)

)
∥u∥L∞(Ω) .

Indeed, since ∥ρε∥L∞(Ω) , ∥aε∥L∞(Ω) ≤ 1, from (1.6) we obtain that ∥∆ρε∥L∞(Ω) ≤
C
ε2
, which

leads to

∥∇ρε∥L∞(Ω) ≤
C

ε
.
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□

Proposition 2.2. Suppose aε ∈ H1(Ω). It holds that:

(1) There exists a constant C > 0 such that ∥∇ρε∥L2(Ω) ≤ C ∥∇aε∥L2(Ω).

(2) For α ∈ (0, 1), let Xα := {x ∈ Ω: |aε(x) − ρε(x)
2| > εα}. Then, for some C > 0, we

have

|Xα| < C ∥∇aε∥2L2(Ω) ε
2(1−α).

Proof. On the one hand, since ρε is a minimizer in H1(Ω,C), we have

∥∇ρε∥2L2(Ω) ≤ Eε(ρε) ≤ Eε(
√
aε) =

1

2
∥∇

√
aε∥2L2(Ω) ≤ C ∥∇aε∥2L2(Ω) .

On the other hand,

C ∥∇aε∥2L2(Ω) ≥ Eε(ρε) ≥
∫
Xα

(aε − ρ2ε)

2ε2
>

|Xα|ε2α

ε2
.

Hence

|Xα| < C ∥∇aε∥2L2(Ω) ε
2(1−α).

□

Remark 2.1. Although we will not use this result in this paper, we present it to the reader
to better understand the role of ρε. This result shows that, when aε is regular enough, ρε is
a very close approximation of

√
aε, except for a very small set. This small set is expected to

be located near the boundary and near the discontinuity regions of aε; see [AAB05,DS21] for
some specific models.

2.3. Estimates for critical points in the Coulomb gauge. Let us present some esti-
mates for configurations (u,A) in the Coulomb-gauge, that is, when A satisfies (1.3). From
[SS07, Proposition 3.3], we have

(2.6) ∥A∥H1(Ω) ≤ C ∥curlA∥L2(Ω) ,

and

(2.7) ∥A∥H2(Ω) ≤ C ∥curlA∥H1(Ω) ,

where C > 0 depends only on Ω. These estimates play a crucial role on obtaining better
regularity results for solutions of (2.1). In particular, we have the following three results.

Proposition 2.3. Let (u, A) = (ρεu,A) be a solution of (2.1), where A satisfies (1.3). Then

(2.8) ∥A∥L∞(Ω) ≤ C(Eε(ρε) + Fε,ρε(u,A))
1
2 ,

where C > 0 depends only on Ω.

Proof. From the second equation in (2.1) and the Cauchy–Schwarz inequality, we deduce
that

∥∇ curlA∥L2(Ω) = ∥⟨iu ,∇Au⟩∥L2(Ω) ≤ ∥u∥L2(Ω) ∥∇Au∥L2(Ω) .

Since |u| ≤ 1 (recall (2.2)), it follows that

∥∇ curlA∥2L2(Ω) ≤ ∥∇Au∥2L2(Ω) ≤ CEε(u, A).
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The decoupling (2.4) then yields

∥∇ curlA∥2L2(Ω) ≤ C (Eε(ρε) + Fε,ρε(u,A)) .

Moreover, since ∥curlA∥2L2(Ω) ≤ 2Fε,ρε(u,A), we deduce that

∥curlA∥2H1(Ω) ≤ C(Eε(ρε) + Fε,ρε(u,A)).

Finally, by (2.7) and Sobolev embedding, we obtain (2.8). □

The hypotheses of our main result will allow us to control the RHS of (2.8) by C
ε
, for a

constant C > 0 independent of ε. This in turn allows us to obtain the following estimate.

Proposition 2.4. Let (u, A) = (ρεu,A) be a solution of (2.1), where A satisfies (1.3) and

∥A∥L∞(Ω) ≤ C̃
ε
for some C̃ > 0 not depending on ε. Then

(2.9) ∥∇u∥L∞(Ω) ≤
C

ε
and ∥∇u∥L∞(Ω) ≤

C

ε
,

where C > 0 does not depend on ε.

Proof. By expanding the first equation in (2.1), using in particular (1.3), we get

−∆u =
u(aε − |u|2)

ε2
− 2iAu · ∇u− |A|2u2.

Moreover, from the boundary conditions ∇Au · ν = 0 and A · ν = 0 on ∂Ω, we get

∂u

∂ν
= 0 on ∂Ω.

Therefore, u satisfies (2.5). Combining this with (2.2) and our bound on ∥A∥L∞(Ω), we
deduce that

∥∇u∥2L∞(Ω) ≤ C

(
1

ε2
+ ∥A∥L∞(Ω) ∥∇u∥L∞(Ω) + ∥A∥2L∞(Ω)

)
≤ C

ε

(
1

ε
+ ∥∇u∥L∞(Ω)

)
,

from where it follows that

∥∇u∥L∞(Ω) ≤
C

ε
.

Finally, using Proposition 2.1, we get

∥∇u∥L∞(Ω) =

∥∥∥∥∇( u

ρε

)∥∥∥∥
L∞(Ω)

≤ C
(
∥∇u∥L∞(Ω) + ∥∇ρε∥L∞(Ω)

)
≤ C

ε
.

□

The gradient bound (2.9) plays a crucial role in the next clearing out result.

Proposition 2.5. Let (u,A) ∈ H1(Ω,C)×H1(Ω,R2) be a configuration such that

∥∇|u|∥L∞(Ω) ≤
C

ε
and Fε,ρε(u,A) = o(1).

Then ∥1− |u|∥L∞(Ω) = o(1).
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Proof. Observe that, since ρε ≥
√
b (recall Proposition 2.1), we have

b2Fε(u,A) ≤ Fε,ρε(u,A) = o(1).

Therefore, the proposition directly follows from the classical clearing out result for the ho-
mogeneous Ginzburg–Landau energy, which goes back to the seminal work of Bethuel, Brezis
and Helein [BBH94, Theorem III.3].

□

2.4. Vorticity estimate. Recall that the vorticity is defined as

µ(u,A) = curl(⟨iu ,∇Au⟩+ A).

It is well known that in the homogeneous case, under adequate bounds on the free energy
Fε(u,A), µ(u,A) essentially acts as a sum of Dirac masses centered at the vortices when
tested against sufficiently regular functions vanishing on the boundary. This also happens
in the inhomogeneous case, since b2Fε(u,A) ≤ Fε,ρε(u,A). We have the following version of
[SS07, Theorem 6.1].

Proposition 2.6. Let B = {Bi}i = {B(ai, ri)}i be a finite collection of disjoint closed balls
and ε > 0 such that

(2.10)

{
x ∈ Ωε : ||u(x)| − 1| ≥ 1

2

}
⊆
⋃
i

Bi,

where Ωε := {x ∈ Ω: dist(x, ∂Ω) > ε}. Then, for any r =
∑

i ri ≤ 1, ε ≤ 1, there exists a
universal constant C > 0 such that

(2.11)

∥∥∥∥∥µ− 2π
∑
i

dBi
δai

∥∥∥∥∥
(C0,1

0 (Ω))
∗
≤ Cmax{ε, r}

(
1 +

M

b2

)
,

where dBi
= deg(u, ∂Bi) if Bi ⊂ Ωε and 0 otherwise, M = Fε,ρε(u,A), and

(
C0,1

0 (Ω)
)∗

is the

dual space of C0,1
0 (Ω) = W 1,∞

0 (Ω).

Proof. Since b2Fε(u,A) ≤ Fε,ρε(u,A), the proof is exactly the same as the proof of [SS07,
Theorem 6.1]. □

2.5. Approximation of the Meissner state. We want to estimate the minimal energy
among vortexless configurations. Heuristically, a good starting point would be to consider a
pair of the form (

√
aε, A), where A minimizes GLε(

√
aε, · ) in a suitable space. However, aε

may not be in H1(Ω). This leads to the introduction of the aforementioned function ρε.
Taking into account that ρε is essentially a regularized version of

√
aε, we proceed to the

task of minimizing GLε(ρε, · ). For convenience, we next work with hexA instead of A.
Observe that from the energy decoupling (2.4), we have

GLε(ρε, hexA) = Eε(ρε) +
1

2

∫
Ω

ρ2εh
2
ex|A|2 + h2ex| curlA− 1|2.

This leads us to look for vector fields A that minimize the reduced energy functional

J(A) =
1

2

∫
Ω

ρ2ε|A|2 + | curlA− 1|2.
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Without loss of generality, we can look for minimizers in the Coulomb gauge, that is, vector-
fields that satisfy (1.3). Note that J is strictly convex. Furthermore, since we look for
minimizers in the Coulomb gauge, we have ∥A∥H1(Ω) ≤ C ∥curlA∥L2(Ω). It follows that J is
strictly convex and coercive in the space{

A ∈ H1(Ω,R2) : divA = 0 in Ω, A · ν = 0 on ∂Ω
}

and, as a result, there exists a unique minimizer A0
ε of J in this space. This minimizer

satisfies the associated Euler–Lagrange equation

(2.12)

{
−∇⊥ curlA0

ε + ρ2εA
0
ε = 0 in Ω

curlA0
ε = 1 on ∂Ω.

This in particular means that (recall that 0 < b ≤ ρ2ε ≤ 1 in Ω)

A0
ε =

∇⊥ curlA0
ε

ρ2ε
in Ω.

Also, letting h0ε = curlA0
ε, by taking the curl of the PDE in (2.12), we deduce that h0ε solves

(2.13)

 − div

(
∇h0ε
ρ2ε

)
+ h0ε = 0 in Ω

h0ε = 1 on ∂Ω.

Finally, we let ξε = 1− h0ε to deduce that (1.8) holds true. It is worth remarking that ξε is
the analog of the function ξ0 that appears in the analysis of the Ginzburg–Landau energy
functional without pinning (i.e. (1.1) when aε ≡ 1 in Ω); see for instance [Ser99a].

Proposition 2.7. We have that

0 ≤ h0ε ≤ 1 in Ω,(2.14)

0 ≤ ξε ≤ 1 in Ω.(2.15)

Proof. From (2.13), by applying the maximum principle, we deduce that h0ε ≤ max∂Ω h
0
ε
+
= 1

and h0ε ≥ −max∂Ω h
0
ε
−
= 0, where h0ε

+
= max{h0ε, 0} and h0ε

−
= −min{h0ε, 0}. The bounds

for ξε follow immediately since ξε = 1− h0ε. □

An elemental consequence of the preceding proposition is that

(2.16) ∥ξε∥H1(Ω) ≤ C,

where C > 0 does not depend on ε. To see this, we test the equation in (1.8) against ξε and
use (2.15) and ρ2ε ≤ 1.

∥ξε∥2H1(Ω) ≤
∫
Ω

|∇ξε|2

ρ2ε
+ |ξε|2 =

∫
Ω

ξε ≤ |Ω|.

Analogously,

(2.17)
∥∥h0ε∥∥H1(Ω)

≤ C.

However, a rather surprising fact is that such a bound also holds for W 1,∞
0 (Ω).
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Proposition 2.8. We have that

(2.18) ∥∇ξε∥L∞(Ω) ≤ C,

where C > 0 does not depend on ε.

Proof. In this proof, C > 0 denotes a constant independent of ε that may change from line

to line. Recall that A0
ε = −∇⊥ξε

ρ2ε
. Therefore, using Proposition 2.1, we have

(2.19) ∥∇ξε∥L∞(Ω) = ∥ρ2εA0
ε∥L∞(Ω) ≤ ∥A0

ε∥L∞(Ω).

On the other hand, since A0
ε satisfies (1.3), (2.7) yields∥∥A0

ε

∥∥
H2(Ω)

≤ C
∥∥curlA0

ε

∥∥
H1(Ω)

= C
∥∥h0ε∥∥H1(Ω)

.

Combining with (2.17), we deduce that∥∥A0
ε

∥∥
H2(Ω)

≤ C,

which, by Sobolev embedding, yields ∥∥A0
ε

∥∥
L∞(Ω)

≤ C.

Inserting this in (2.19) concludes the proof.
□

Proposition 2.9. We have that

lim inf
ε→0

max
Ω

ξε > 0.

Proof. Let us assume towards a contradiction that there exists a sequence {εn}n∈N such that

max
Ω

ξεn → 0 as n→ ∞.

By testing (1.8) by ξεn and integrating by parts, we find∫
Ω

|∇ξεn|2

ρ2εn
+

∫
Ω

ξ2εn =

∫
Ω

ξεn .

Since ρ2εn ≤ 1, we deduce that

∥ξεn∥2H1(Ω) ≤
∫
Ω

ξεn ≤ |Ω|max
Ω

ξεn .

Thus, ∥ξεn∥2H1(Ω) → 0 as n → ∞. On the other hand, by testing (1.8) by v ∈ H1
0 (Ω) and

integrating by parts, we find

(2.20)

∫
Ω

∇ξεn · ∇v
ρ2εn

+

∫
Ω

ξεnv =

∫
Ω

v.

Using b ≤ ρ2ε and the Cauchy–Scharwz inequality, we find∣∣∣∣∫
Ω

∇ξεn · ∇v
ρ2εn

∣∣∣∣ ≤ b−1

∣∣∣∣∫
Ω

∇ξεn · ∇v
∣∣∣∣ ≤ b−1∥∇ξεn∥L2(Ω)∥∇v∥L2(Ω) → 0 as n→ ∞.

Similarly, ∣∣∣∣∫
Ω

ξεnv

∣∣∣∣ ≤ ∥ξεn∥L2(Ω)∥v∥L2(Ω) → 0 as n→ ∞.
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Hence, passing to the limit n → ∞ in (2.20), we find
∫
Ω
v = 0 for any v ∈ H1

0 (Ω), which is
a contradiction. □

Remark 2.2. This result immediately yields lim infε→0 ψε > 0. Moreover, since ξε = 0 on
∂Ω, we have ψε = 0 on ∂Ω. We then deduce that there exists d > 0, independently of ε, such
that dist (argmaxΩ(ψε), ∂Ω) > d for any ε > 0.

2.6. Proof of Proposition 1.1. We now are ready to provide a proof for our energy-
splitting.

Proof. From (2.4), we have

GLε(u,A) = Eε(ρεu,A) +
1

2

∫
Ω

| curlA− hex|2(2.21)

= Eε(ρε) +
1

2

∫
Ω

ρ2ε|∇Au|2 + ρ4ε
(1− |u|2)2

2ε2
+ | curlA− hex|2.

By expanding the square |∇Au|2 and integrating by parts (recall from (1.8) that ξε = 0 on
∂Ω), we find

∫
Ω

ρ2ε|∇Au|2 =
∫
Ω

ρ2ε

∣∣∣∣∇Au+ ihex
∇⊥ξε
ρ2ε

u

∣∣∣∣2(2.22)

=

∫
Ω

ρ2ε

(
|∇Au|2 + h2ex

|∇ξε|2

ρ4ε
|u|2 + 2

hex
ρ2ε

⟨∇Au, iu⟩ · ∇⊥ξε

)
=

∫
Ω

ρ2ε|∇Au|2 + h2ex
|∇ξε|2

ρ2ε
|u|2 − 2hex curl(⟨iu ,∇Au⟩)ξε.

We now expand the square | curlA− hex|2, which yields∫
Ω

| curlA− hex|2 =
∫
Ω

∣∣curlA+ hex curlA
0
ε − hex

∣∣2(2.23)

=

∫
Ω

∣∣curlA+ hexh
0
ε − hex

∣∣2
=

∫
Ω

| curlA+ hex(1− ξε)− hex|2

=

∫
Ω

| curlA− hexξε|2

=

∫
Ω

| curlA|2 + h2ex|ξε|2 − 2hexξε curlA.

Inserting (2.22) and (2.23) into (2.21), we deduce that

(2.24) GLε(u,A) = Eε(ρε) + Fε,ρε(u,A)− hex

∫
Ω

µ(u,A)ξε +
h2ex
2

(
|∇ξε|2

ρ2ε
|u|2 + |ξε|2

)
.
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Let us now write GLε(ρε, hexA
0
ε) in terms of the energies of ρε and ξε. We have

GLε(ρε, hexA
0
ε) = Eε(ρε, hexA

0
ε) +

h2ex
2

∫
Ω

| curlA0
ε − 1|2

(2.4)
= Eε(ρε) +

h2ex
2

∫
Ω

ρ2ε|A0
ε|2 + |h0ε − 1|2

= Eε(ρε) +
h2ex
2

∫
Ω

ρ2ε
|∇ξε|2

ρ4ε
+ |ξε|2 = Eε(ρε) +

h2ex
2

∫
Ω

|∇ξε|2

ρ2ε
+ |ξε|2.(2.25)

Therefore, by writing |u|2 as 1 + (|u|2 − 1), we have

h2ex
2

∫
Ω

(
|∇ξε|2

ρ2ε
|u|2 + |ξε|2

)
=
h2ex
2

∫
Ω

(
|∇ξε|2

ρ2ε
+ |ξε|2

)
+
h2ex
2

∫
Ω

|∇ξε|2

ρ2ε
(|u|2 − 1)

(2.25)&(1.10)
= GLε(ρε, hexA

0
ε)− Eε(ρε) +R0.

By inserting this into (2.24), we obtain (1.9). □

Remark 2.3. Since ρε ≥
√
b and ∥ξε∥H1(Ω) ≤ C for some C > 0 independent of ε (recall

(2.16)), from (2.25) we deduce that

(2.26) GLε(ρε, hexA
0
ε) ≤ Eε(ρε) + Ch2ex.

On the other hand, by using the Cauchy–Schwarz inequality, (2.18), and ρε ≥
√
b, we deduce

that

(2.27) |R0| ≤ Ch2ex
∥∥|u|2 − 1

∥∥
L2(Ω)

≤ Ch2exεFε,ρε(u,A)
1
2 .

This in particular means that R0 = o(1) under adequate upper bounds on hex and Fε,ρε(u,A).

3. First critical field

3.1. Heuristic derivation of Hε
c1
. Since the Meissner configuration is a good approxima-

tion of the global minimizer among vortexless configurations (as we shall see in the next
section), we expect the occurrence of vortices in global minimizers (u,A) essentially when
GLε(u,A) < GLε(ρε, hexA

0
ε). By our splitting result (1.9), we know that this is equivalent

to finding values of hex such that

Fε,ρε(u,A)− hex

∫
Ω

µ(u,A)ξε +R0 < 0.

Using the ball construction method given by Proposition A.3 to estimate Fε,ρε(u,A) and the
vorticity estimate (2.11) to approximate µ(u,A) by a sum of Dirac masses, after neglecting
lower order terms, we find that this is possible if

hex >
| log ε|

2maxΩ
ξε
ρ2ε

=
| log ε|

2maxΩ ψε

= Hε
c1
.
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3.2. Proof of Theorem 1.1.

Proof. Note that all the results in this theorem are gauge-invariant. Therefore, we may
assume without loss of generality that (u,A) is in the Coulomb gauge, that is, A satisfies
(1.3). Also, in this proof, C > 0 denotes a constant independent of ε that might change
from line to line.

Step 1 (Proving that Fε,ρε(u,A) ≤ Ch2ex for some C > 0 independent of ε). Since (u,A) is
a global minimizer, we have GLε(u,A) ≤ GLε(ρε, hexA

0
ε). By integrating by parts the third

term in the RHS of (1.9) (recall that ξε = 0 on ∂Ω) and inserting the previous inequality,
we deduce that

Fε,ρε(u,A) = GLε(u,A)− Eε(ρε) + hex

∫
Ω

µ(u,A)ξε −R0

≤ GLε(ρε, hexA
0
ε)− Eε(ρε) + hex

∫
Ω

(⟨iu ,∇Au⟩+ A) · ∇⊥ξε + |R0|.

By inserting (2.26) and using the Cauchy-Schwarz inequality, we obtain

(3.1) Fε,ρε(u,A) ≤ Ch2ex + hex ∥u∥L2(Ω) ∥∇Au∥L2(Ω) ∥∇ξε∥L∞(Ω)

+ hex ∥A∥L2(Ω) ∥∇ξε∥L2(Ω) + |R0|.

Since (u,A) solves (2.1), we have (2.2). Combining this with ∥∇Au∥L2(Ω) ≤ Fε,ρε(u,A)
1
2 and

(2.18), yields that

(3.2) ∥u∥L2(Ω) ∥∇Au∥L2(Ω) ∥∇ξε∥L∞(Ω) ≤ CFε,ρε(u,A)
1
2 .

Moreover, since both A and A0
ε are in the Coulomb gauge, we deduce that A also satisfies

(1.3). Hence, using (2.6), we get that

∥A∥L2(Ω) ≤ ∥A∥H1(Ω) ≤ C ∥curlA∥L2(Ω) ≤ CFε,ρε(u,A)
1
2 ,

which combined with (2.16) yields

(3.3) ∥A∥L2(Ω) ∥∇ξε∥L2(Ω) ≤ CFε,ρε(u,A)
1
2 .

Finally, by combining (3.1) with (3.2), (3.3), and (2.27), we obtain

Fε,ρε(u,A) ≤ C
(
h2ex + hexFε,ρε(u,A)

1
2 + h2exεFε,ρε(u,A)

1
2

)
≤ C

(
h2ex + hexFε,ρε(u,A)

1
2

)
.

It follows that

(3.4) Fε,ρε(u,A) ≤ Ch2ex.

Step 2 (Estimates for Fε,ρε(u,A) and ∥µ(u,A)∥(C0,1
0 )

∗. Proof of item (2)). From (3.4) and

hex = O(| log ε|), we have

(3.5) Fε,ρε(u,A) ≤ C| log ε|2.
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We can therefore apply Proposition A.3, to obtain a finite collection of disjoint balls {Bi}i =
{B(ai, ri)}i with

∑
i ri ≤ r = | log ε|−β, where β > 0 will be chosen later, containing{

||u| − 1| ≥ 1
2

}
such that

Fε,ρε(u,A) ≥ π
∑
i

ρ2ε(ai)|dBi
|
(
log

| log ε|−β

D̃ε
− C

)
= π

∑
i

ρ2ε(ai)|dBi
|(| log ε| − β log | log ε| − log D̃ − C)

(A.4)

≥ π
∑
i

ρ2ε(ai)|dBi
|(| log ε| − β log | log ε| − C log

Fε,ρε(u,A)

| log ε|
− C)

(3.5)

≥ π
∑
i

ρ2ε(ai)|dBi
|(| log ε| − C log | log ε|),(3.6)

where ai ∈ Bi is such that ρ2ε(ai) = minBi
ρ2ε.

On the other hand, applying Proposition 2.6, we have∣∣∣∣hex ∫
Ω

µ(u,A)ξε

∣∣∣∣ (2.11)≤ 2πhex
∑
i

|di|ξε(ai) + Chexr(1 + Fε,ρε(u,A)) ∥∇ξε∥L∞(Ω)

(2.18)&(3.5)

≤ 2πhex
∑
i

|di|ξε(ai) +O(| log ε|3−β)

It also follows from (2.18) that

|ξε(ai)− ξε(ai)| ≤ ∥∇ξε∥L∞(Ω) |ai − ai| ≤ Cri ≤ C| log ε|−β.

Therefore, we have∣∣∣∣hex ∫
Ω

µ(u,A)ξε

∣∣∣∣ ≤ 2πhex
∑
i

|di|ξε(ai) + C| log ε|−βhex
∑
i

|di|+O(| log ε|3−β)

(A.4)

≤ 2πhex
∑
i

|di|ξε(ai) + C| log ε|−βhex
Fε,ρε(u,A)

| log ε|
+O(| log ε|3−β)

(3.5)

≤ 2πhex
∑
i

|di|ξε(ai) +O(| log ε|3−β).

Thus, by choosing β > 3, we get

(3.7)

∣∣∣∣hex ∫
Ω

µ(u,A)ξε

∣∣∣∣ ≤ 2πhex
∑
i

|di|ξε(ai) + o(1).

Combining (3.6) and (3.7), we deduce that

(3.8) Fε,ρε(u,A)− hex

∫
Ω

µ(u,A)ξε ≥

π
∑
i

ρ2ε(ai)|di|
(
| log ε| − C log | log ε| − 2hexψε(ai)

)
+ o(1).
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Therefore, since hex ≤ Hε
c1
−K0 log | log ε|, we have

| log ε| − C log | log ε| − 2hexψε(ai) ≥ | log ε| − C log | log ε| − 2hex max
Ω

ψε

≥ log | log ε|
(
2max

Ω
ψεK0 − C

)
.

Remark 1.1 (or Proposition 2.9) then allows us to choose K0 > 0, independently of ε, so
that

2max
Ω

ψεK0 − C = 1.

Inserting this into (3.8), we find

(3.9) Fε,ρε(u,A)− hex

∫
Ω

µ(u,A)ξε ≥ π
∑
i

ρ2ε(ai)|di| log | log ε|+ o(1).

Moreover, since GLε(u,A) ≤ GLε(ρε, hexA
0
ε), it follows from (1.9) that

Fε,ρε(u,A)− hex

∫
Ω

µ(u,A)ξε +R0 ≤ 0.

In addition,

(3.10) |R0| ≤ Ch2exεFε,ρε(u,A)
1
2

(3.5)

≤ Cε| log ε|3 = o(1).

Hence,

(3.11) Fε,ρε(u,A)− hex

∫
Ω

µ(u,A)ξε ≤ o(1).

By combining (3.9) and (3.11), using also ρ2ε ≥ b, we deduce that
∑

i |di| = 0 and thus di = 0
for all i. In turn, from (2.11) it follows that

(3.12) hex ∥µ(u,A)∥(C0,1
0 (Ω))

∗ ≤ Chexr(1 + Fε,ρε(u,A)) ≤ C| log ε|3−β = o(1).

Therefore, item (2) is satisfied.

Step 3 (Clearing out. Proof of items (1) and (3)). Since (u,A) is in the Coulomb gauge,
we have

∥A∥L∞(Ω) ≤ C(Eε(ρε) + Fε,ρε(u,A))
1
2

(3.5)

≤ C

(
1

ε2
+ | log ε|2

) 1
2

≤ C

ε
.

Then, it follows from (2.9) that

∥∇|u|∥L∞(Ω) ≤ ∥∇u∥L∞(Ω) ≤
C

ε
.

On the other hand, by combining (3.11) with (3.12), we find

(3.13) Fε,ρε(u,A) ≤ hex

∫
Ω

µ(u,A)ξε + o(1)
(2.18)&(3.12)

= o(1).

Hence, Proposition 2.5 yields that item (1) holds.
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Finally, we have

GLε(u,A) = GLε(ρε, hexA
0
ε) + Fε,ρε(u,A)− hex

∫
Ω

µ(u,A)ξε +R0

(3.10)&(3.12)&(3.13)
= GLε(ρε, hexA

0
ε) + o(1)

This finishes the proof of item (3).

□

3.3. Proof of Theorem 1.2.

Proof. In this proof, we will construct a configuration of the form (u,A) = (ρεu, 0+ hexA
0
ε),

with a vortex of degree 1 centered at x0ε ∈ Ω, where x0ε is such that

(3.14) ψε(x
0
ε) = max

Ω
ψε.

We will prove that the energy of such a configuration is much lower than the energy of
the Meissner configuration, which in turn guaranties that global minimizers of (1.1) in this
regime have vortices.

Step 1 (Constructing the configuration). Let Φ be a multiple of the fundamental solution
of the Laplace’s equation centered at x0ε, that is,

Φ(x) = log
1

|x− x0ε|
.

We begin by constructing a phase φ in Ω \ {x0ε} as follows. Let Θ be the phase of

z − x0ε
|z − x0ε|

.

Since
−∆Φ = 2πδx0

ε
= curl∇Θ in Ω,

we have that, in the sense of distributions,

curl(−∇⊥Φ−∇Θ) = 0 in Ω.

Therefore, there exists g such that ∇g = −∇⊥Φ−∇Θ. We let φ = Θ+ g. Observe that φ
is well defined modulo 2π in Ω \ {x0ε} and satisfies the following relation

(3.15) ∇φ = −∇⊥Φ.

Let rε = | log ε|−M , where M > 0 will be chosen later on, and consider the ball Bε =
B(x0ε, rε) ⊂ Ω. Notice that this condition holds for any ε sufficiently small in view of
Remark 2.2.

We can now define u. For x ∈ Ω \Bε, we let u(x) = eiφ(x) and, for x ∈ Bε, we define

u(x) =
1

f(Rε)
f

(
|x− x0ε|

ε

)
eiφ(x),

where Rε is such that rε = εRε and f : R+ → R+ is a function such that f(0) = 0, f(r) → 1
as r → ∞ and satisfies the following asymptotic estimate

(3.16)
1

2

∫ R

0

(
f ′(r)2 +

f(r)2

r2
+

(1− f(r)2)2

2

)
2πrdr = π logR +O(1) as R → ∞.
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The function f is the modulus of what is referred to as the degree-one radial solution [SS07,
Definition 3.6], and its existence and properties are given by [SS07, Proposition 3.11].

Step 2 (Estimating the energy inside Bε). Let kε = supx∈Bε
|ρ2ε(x) − ρ2ε(x

0
ε)|. Using that

ρ2ε ≤ 1, We have

Fε,ρε,Bε(u, 0) =
1

2

∫
Bε

ρ2ε|∇u|2 + ρ4ε
(1− |u|2)2

2ε2
≤ 1

2

∫
Bε

ρ2ε

(
|∇u|2 + (1− |u|2)2

2ε2

)
≤ 1

2
(ρ2ε(x

0
ε) + kε)

∫
Bε

|∇u|2 + (1− |u|2)2

2ε2
.

We now estimate the integral that appears in the RHS of the last inequality. Since |∇u|2 =
|∇|u||2 + |u|2|∇φ|2, it follows by letting r = |x−x0

ε|
ε

and performing a direct calculation that

1

2

∫
Bε

|∇u|2 + (1− |u|2)2

2ε2
=

1

2

∫
Bε

(
f ′(r)2

ε2f(R)2
+
f(r)2

f(R)2
|∇Φ(x)|2 + 1

2ε2

(
1− f(r)2

f(R)2

)2
)
dx.

Note that |∇Φ(x)| = 1
|x−x0

ε|
= 1

εr
. By changing the variable of integration to r, we obtain

1

2

∫
Bε

|∇u|2 + (1− |u|2)2

2ε2
=

1

2

∫ Rε

0

(
f ′(r)2

f(R)2
+
f(r)2

f(R)2
1

r2
+

1

2

(
1− f(r)2

f(R)2

)2
)
2πrdr.

Since Rε → ∞ as ε→ 0, we have f(Rε) → 1 as ε→ 0. Therefore, it follows from (3.16) that

1

2

∫
Bε

ρ2ε|∇u|2 + ρ4ε
(1− |u|2)2

2ε2
≤ (ρ2ε(x

0
ε) + kε)(π logRε +O(1))

= (ρ2ε(x
0
ε) + kε)(π log rε − π log ε+O(1))

= (ρ2ε(x
0
ε) + kε)(π| log ε| − πM log | log ε|).

From the hypothesis on ρε we have kε ≤ [ρ2ε]C0,α(Ω)r
α
ε ≤ | log ε|m−αM . Therefore, by choosing

a sufficiently large M , we have

(3.17)
1

2

∫
Bε

ρ2ε|∇u|2 + ρ4ε
(1− |u|2)2

2ε
≤ ρ2ε(x

0
ε) (π| log ε| − πM log | log ε|) .

Step 3 (Estimating the energy outside Bε). Let C(Ω) = diam(Ω). Since |u| = 1 outside Bε,
we have ∇|u| = 0 and thus∫

Ω\Bε

|∇u|2 =
∫
Ω\Bε

|∇|u||2 + |u|2|∇φ|2

(3.15)
=

∫
Ω\Bε

|∇Φ|2.
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Therefore, using once again that ρ2ε ≤ 1, we have

Fε,ρε,Ω\Bε(u, 0) =
1

2

∫
Ω\Bε

ρ2ε|∇u|2 + ρ4ε
(1− |u|2)2

2ε2
≤ 1

2

∫
Ω\Bε

|∇Φ|2

=
1

2

∫
Ω\Bε

1

|x− x0ε|2
dx

≤ 1

2

∫ C(Ω)

rε

1

r2
2πrdr

= −π log rε +O(1)

= πM log | log ε|+O(1).

Hence, by combining the estimates obtained in Step 2 and Step 3, we obtain the following
upper bound for the free energy

(3.18) Fε,ρε(u, 0) ≤ π
(
ρ2ε(x

0
ε)| log ε|+ (1− ρ2ε(x

0
ε))M log | log ε|

)
+O(1).

Step 4 (Computation of the full Ginzburg–Landau energy of the constructed configuration).
Consider the configuration (u,A) = (ρεu, 0 − hexA

0
ε). We split GLε(u,A) using (1.9), to

obtain

GLε(u,A)−GLε(ρε, hexA
0
ε) = Fε,ρε(u, 0)− hex

∫
Ω

µ(u, 0)ξε +R0

(3.18)

≤ πρ2ε(x
0
ε)| log ε|+

(
1− ρ2ε(x

0
ε)
)
πM log | log ε|

− hex

∫
Ω

µ(u, 0)ξε +R0.(3.19)

Here is where the hypothesis on hex

(3.20) Hε
c1
+K0 log | log ε| ≤ hex ≤ | log ε|N

plays its role. First, we have

(3.21) |R0|
(2.27)

≤ Ch2exεFε,ρε(u, 0)
1
2

(3.18)&(3.20)

≤ Cε| log ε|
1
2
+2N = o(1).

On the other hand, since |u| = 1 in Ω \Bε, from (2.11) it follows that (recall rε = | log ε|M)∫
Ω

µ(u, 0)ξε ≥ 2πξε(x
0
ε)− CrεFε,ρε(u, 0) ∥∇ξε∥L∞(Ω)

(3.18)

≥ 2πξε(x
0
ε)− C| log ε|−M | log ε|.

Therefore, we have

hex

∫
Ω

µ(u, 0)ξε ≥ 2πhexξε(x
0
ε)− C| log ε|N−M+1.

By choosing a larger M if necessary, we get

(3.22) hex

∫
Ω

µ(u, 0)ξε ≥ 2πhexξε(x
0
ε) + o(1).
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Finally, by combining (3.19), (3.21), (3.22), and −ρ2ε(x0ε) ≤ −b, we are led to

GLε(u,A)−GLε(ρε, hexA
0
ε)

≤ π
(
ρ2ε(x

0
ε)| log ε|+ (1− ρ2ε(x

0
ε))M log | log ε| − 2hexξε(x

0
ε)
)
+ o(1)

≤ π| log ε|

(
ρ2ε(x

0
ε)−

ξε(x
0
ε)

maxΩ
ξε
ρ2ε

)
+ π log | log ε|

(
(1− b)M − 2K0ξε(x

0
ε)
)
+ o(1).

Since ψε = ξε
ρ2ε

achieves its maximum at x0ε, the term of order | log ε| in the RHS of the

last inequality is equal to 0. Therefore, since lim infε→0maxΩ ξε > 0 (see Remark 1.1 or
Proposition 2.9), we may choose K0, independently of ε, such that we have

(3.23) GLε(u,A)−GLε(ρε, hexA
0
ε) < − log | log ε|.

Step 5 (Conclusion). Let (u0,A0) = (ρεu0, A0 + hexA
0
ε) be a vortexless configuration, that

is, |u0| > c for some c > 0 independent of ε, such that GLε(u0,A0) ≤ GLε(ρε, hexA
0
ε). We

split its Ginzburg–Landau energy with (1.9) to obtain

0 > GLε(u0,A0)−GLε(ρε, hexA
0
ε) = Fε,ρε(u0, A0)− hex

∫
Ω

µ(u0, A0)ξε +R0.

By integration by parts, we have (recall ξε = 0 on ∂Ω)∫
Ω

µ(u0, A0)ξε =

∫
Ω

(⟨iu0 ,∇A0u0⟩+ A0) · ∇⊥ξε.

Since |u0| > c, we can write u0 = |u0|eiφ0 . A direct calculation shows that

⟨iu0 ,∇A0u0⟩+ A0 = (1− |u0|2)(∇φ0 − A0) +∇φ0.

Integration by parts then yields∫
Ω

∇φ0 · ∇⊥ξε = −
∫
Ω

ξε curl∇φ0 = 0.

Hence, from the Cauchy–Schwarz inequality it follows that

hex

∣∣∣∣∫
Ω

µ(u0, A0)ξε

∣∣∣∣ = hex

∣∣∣∣∫
Ω

(1− |u0|2)(∇φ0 − A0)

∣∣∣∣
≤ Chexε

∥∥1− |u0|2
∥∥
L2(Ω)

∥∇φ0 − A0∥L2(Ω)

(3.20)

≤ C| log ε|NεFε,ρε(u0, A0) = o(1)Fε,ρε(u0, A0).

On the other hand,

|R0|
(2.27)

≤ Ch2exεFε,ρε(u0, A0)
1
2

(3.20)

≤ Cε| log ε|2NFε,ρε(u0, A0)
1
2 .

Therefore, we have

0 > GLε(u0,A0)−GLε(ρε, hexA
0
ε)

> Fε,ρε(u0, A0)(1− o(1))− ε| log ε|2NFε,ρε(u0, A0)
1
2 .

This implies that Fε,ρε(u0, A0)
1
2 ≤ Cε| log ε|2N = o(1) and therefore

GLε(u0,A0)−GLε(ρε, hexA
0
ε) = o(1).
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This means that GLε(u,A) ≪ GLε(u0,A0) for every vortexless configuration (u0,A0).
Hence, global minimizers of (1.1) in the regime (3.20) do have vortices. This concludes
the proof of the theorem.

□

Remark 3.1. Notice that the hypothesis on ρε only plays a role at the end of Step 2.
Moreover, we can replace [ρ2ε]C0,α(Ω) ≤ | log ε|m by [ρ2ε]C0,α(Bε) ≤ | log ε|m, that is, we only
need a control over the Hölder seminorm around the points where the function ψ achieves
its maximum in Ω.

4. Existence and uniqueness of a Meissner configuration above the first
critical field

4.1. Proof of Theorem 1.3.

Proof. In this proof, we use C to denote a positive constant independent of ε that might
change in each line.

Step 1 (Construction of the locally minimizing vortexless configuration. Proof of items (1),
(2) and (3)). Fix β ∈ (0, 2− 4α) and let

U =
{
(u,A) ∈ H1(Ω,C)×H1(Ω,R2) : divA = 0 in Ω, A · ν = 0 on ∂Ω, Fε,ρε(u,A) < εβ

}
.

First, let us prove that there exists a configuration (uε,Aε) that minimizes GLε over U .
Note that if (u,A) = (ρε, hexA

0
ε), then (u,A) = (1, 0). This means that Fε,ρε(1, 0) = 0 and

A = 0 (trivially) satisfies (1.3). It follows that (ρε, hexA
0
ε) ∈ U and therefore, U ̸= ∅.

On the one hand, using Sobolev embedding and the Cauchy–Schwarz inequality, we find
that each (u,A) = (ρεu,A+ hexA

0
ε) ∈ U satisfies

∥A∥2H1(Ω)

(2.6)

≤ C ∥curlA∥2H1(Ω) ≤ CFε,ρε(u,A) < Cεβ,

∥u∥2L4(Ω) =
∥∥u2∥∥

L2(Ω)
≤ C + ∥1− |u|2∥L2(Ω) ≤ C(1 + εFε,ρε(u,A)

1
2 ) < C(1 + ε1+

β
2 ),

∥∇u∥L2(Ω) ≤ C ∥∇Au∥L2(Ω) + ∥Au∥L2(Ω) ≤ Fε,ρε(u,A)
1
2 + ∥A∥L4(Ω) ∥u∥L4(Ω) ≤ Cε

β
2 .

Hence, U is bounded.
On the other hand, by writing

GLε(u,A) =
1

2

∫
Ω

(|∇u|2 + |A|2|u|2 − 2⟨∇u , iAu⟩) + | curlA− hex|2 +
(aε − |u|2)2

2ε2
,

we deduce that GLε is H
1-weakly lower semicontinuous, since:

• The term
∫
Ω
|∇u|2 + | curlA− hex|2 is convex and H1-strongly continuous. Therefore,

it is H1-weakly lower semicontinuous.

• The term 1
2

∫
Ω

(aε−|u|2)2
2ε2

is L4-strongly continuous and, by the Rellich–Kondrachov the-
orem, also H1-weakly continuous.

• By the Cauchy–Schwarz inequality, the term
∫
Ω
|A|2|u|2 is L4-strongly continuous and,

once again, by the Rellich-Kondrachov theorem it is also H1-weakly continuous.
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• The term
∫
Ω
⟨∇u , iAu⟩ is also H1-weakly continuous. To see this, if (un,An) weakly

converges to (u,A) in H1(Ω,C)×H1(Ω,R2), then, by the Rellich-Kondrachov theorem,
(un,An) strongly converges to (u,A) in L4(Ω,C) × L4(Ω,R2) and therefore, Anun

strongly converges to Au in L2(Ω). This means that
∫
Ω
⟨∇un , iAnun⟩ converges to∫

Ω
⟨∇u , iAu⟩.

Since GLε is H
1-weakly lower semicontinuous in a nonempty bounded set U , it follows that

there exists (uε,Aε) that minimizes GLε over U . Moreover, we have

(4.1) Fε,ρε(uε, Aε) ≤ εβ.

We claim that (uε,Aε) ∈ U , which in turn implies that (uε,Aε) is a critical point and thus,
a solution of (2.1). From now on we drop the ε subscript.
Since (u,A) is a minimizing configuration in U ,

(4.2) GLε(u,A) ≤ GLε(ρε, hexA
0
ε).

By combining (1.9) with (4.2), we deduce that

(4.3) Fε,ρε(u,A) ≤ hex

∫
Ω

µ(u,A)ξε −R0.

First, let us bound the vorticity term. Since Fε,ρε(u,A) ≤ εβ, we can apply Proposition A.3,
which provide us with a collection of balls B = {Bi}i = {B(ai, ri)}, with

∑
i ri ≤ r = εµ and

where µ ∈ (α, 1) is a fixed number.
By combining (4.1) and (A.4), we obtain∑

i

|dBi
| ≤ C

Fε,ρε(u,A)

| log ε|
≤ C

εβ

| log ε|
= o(1).

It follows that
∑

i |dBi
| = 0, which implies dBi

= 0 for all i. Hence, it follows from (2.11)
and the hypothesis hex ≤ ε−α, that

hex

∣∣∣∣∫
Ω

µ(u,A)ξε

∣∣∣∣ ≤ Cε−αεµFε,ρε(u,A) ∥∇ξε∥L∞(Ω)

(2.18)

≤ Cε−α+β+µ

µ>α
= o(εβ).(4.4)

An analogous argument shows that item (2) holds, that is,

∥µ(u,A)∥(C0,1
0 (Ω))

∗ = o(1).

Let us now provide an upper bound for |R0|. Combining hex ≤ ε−α with (4.1), (2.18) and
(2.27) yields

|R0| ≤ Ch2exεFε,ρε(u,A)
1
2 ∥∇ξε∥L∞(Ω)

≤ Cε
β
2
+1−2α.

Observe that since β < 2− 4α, we have

β

2
+ 1− 2α >

β

2
+
β

2
= β,
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which means that

(4.5) |R0| = o(εβ).

Therefore, inserting (4.4) and (4.5) into (4.3), we deduce that

(4.6) Fε,ρε(u,A) ≤ hex

∣∣∣∣∫
Ω

µ(u,A)ξε

∣∣∣∣+ |R0| ≤ o(εβ).

The claim is thus proved, that is, (u,A) ∈ U for small enough ε. Moreover, since U is open,
the configuration (u,A) must be a local minimizer of GLε.

Finally, by combining (4.1), (4.4) and (4.5), we conclude that item (1) holds, since (recall
(4.2))

GLε(ρε, hexA
0
ε) ≥ GLε(u,A) = GLε(ρε, hexA

0
ε) +O(εβ).

Let us now prove that (u,A) is a vortexless configuration. Since (u,A) is a local minimizer,
it solves the Ginzburg–Landau equations (2.1). Since we have (4.6), it follows from (2.8)
that ∥A∥L∞(Ω) ≤

C
ε
and therefore, from (2.9), that

∥∇|u|∥L∞(Ω) ≤ ∥∇u∥L∞(Ω) ≤
C

ε
.

Thus, by Proposition 2.5, item (3) holds.

Step 2 (Closeness to the Meissner configuration. Proof of items (4) and (5)). We start by
estimating ∥∇u∥L2(Ω). Note that∫

Ω

|∇u|2 ≤ 2

(∫
Ω

|∇Au|2 + |A|2|u|2
)
.

On the other hand, the Coulomb gauge estimate (2.6) yields

(4.7) ∥A∥H1(Ω) ≤ C ∥curlA∥L2(Ω) ≤ CFε,ρε(u,A)
1
2

(4.6)
= o(ε

β
2 ).

This together with the uniform convergence from item (1) ∥1− |u|∥L∞(Ω) = o(1), leads us to

(4.8)

∫
Ω

|∇u|2 ≤ C
(
Fε,ρε(u,A) + ∥A∥2L2(Ω)

)
= o(εβ).

Let us now provide an estimate for ∥u∥L2(Ω). Defining u = 1
|Ω|

∫
Ω
u, by the Poincaré–Wirtinger

inequality, we have ∫
Ω

|u− u|2 ≤ C

∫
Ω

|∇u|2 = o(εβ)

We then deduce that∫
Ω

(1− |u|)2 ≤ 2

(∫
Ω

|1− u|2 + |u− u|2
)

= o(εβ).

Since u is constant in Ω, we deduce that u = eiθε + o(ε
β
2 ). Combining this with (4.7) and

(4.8) yields that item (4) holds, since
(4.9)

inf
θ∈[0,2π]

∥∥u− eiθ
∥∥
H1(Ω)

+ ∥A∥H1(Ω) = inf
θ∈[0,2π]

∥∥u− eiθ
∥∥
L2(Ω)

+ ∥∇u∥L2(Ω) + ∥A∥H1(Ω) = o(ε
β
2 ).
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Finally, we prove item (5). The estimate on ∥A− hexA
0
ε∥H1(Ω) follows immediately, since

A − hexA
0
ε = A. On the other hand, for r ∈ [1, 2), let s > 2 such that 1

r
= 1

s
+ 1

2
. Then,

using Hölder’s inequality and a Sobolev embedding, we deduce that (recall u = ρεu)∥∥u− ρεe
iθ
∥∥
W 1,r(Ω)

≤
∥∥ρε(u− eiθ)

∥∥
Lr(Ω)

+ ∥ρε∇u∥Lr(Ω) +
∥∥(u− eiθ)∇ρε

∥∥
Lr(Ω)

ρε≤1

≤ C
(∥∥u− eiθ

∥∥
L2(Ω)

+ ∥∇u∥L2(Ω)

)
+
∥∥u− eiθ

∥∥
Ls(Ω)

∥∇ρε∥L2(Ω)

≤ C
∥∥u− eiθ

∥∥
H1(Ω)

(
1 + ∥∇ρε∥L2(Ω)

)
(4.9)

≤ C
∥∥u− eiθ

∥∥
H1(Ω)

(1 + ε−γ),

where in the last inequality we used the hypothesis ∥∇ρε∥L2(Ω) ≤ ε−γ, for γ < 1−2α. Since,

until this point, the choice of β ∈ (0, 2 − 4α) was arbitrary, we may change it if necessary,
so that β

2
∈ (γ, 1− 2α). Hence

inf
θ∈[0,2π]

∥∥u− ρεe
iθ
∥∥
W 1,r(Ω)

≤ Cε−γ inf
θ∈[0,2π]

∥∥u− eiθ
∥∥
H1(Ω)

(4.9)

≤ o(ε
β
2 )ε−γ = o(1).

This concludes the proof.

□

4.2. Proof of Theorem 1.4. We now prove the uniqueness (up to a gauge transformation)
of a vortexless minimizing configuration.

Proof. We will adapt the proofs of [Ser99b, Section 2] and [Rom19, Theorem 1.5]. To prove
uniqueness up to a gauge transformation, we will prove that there is a unique minimizer in
the Coulomb gauge. Suppose (uj,Aj) = (ρεuj, Aj + hexA

0
ε) are distinct local minimizers,

where Aj satisfies the Coulomb gauge condition (1.3) for j = 1, 2. Since A0
ε also satisfies

(1.3), we deduce that Aj does it as well.
By (2.9) and Proposition 2.5, we have that |uj| converges uniformly to 1. In particular, we

have |uj| ≥ 3
4
for small enough ε1. Therefore we can write uj = ηje

iϕj , where ηj = |uj|. Note
that (uj, Aj) is gauge-equivalent to (ηj, A

′
j), where A

′
j = Aj−∇ϕj. LetA

◦
j = Aj+hexA

0
ε−∇ϕj,

which is gauge-equivalent to (uj,Aj) and therefore is a local minimizer.

Step 1 (Proving that
∥∥A◦

j

∥∥
L∞(Ω)

= o(ε−1)). Observe that∥∥A◦
j

∥∥
L∞(Ω)

≤
∥∥Aj + hexA

0
ε

∥∥
L∞(Ω)

+ ∥∇ϕj∥L∞(Ω) .

From (2.8), we have that

(4.10)
∥∥Aj + hexA

0
ε

∥∥
L∞(Ω)

= o(ε−1),

since we are assuming Eε(ρε) ≪ 1
ε2

and Fε,ρε(uj, Aj) < εβ. We are then left to prove
∥∇ϕj∥L∞(Ω) = o(ε−1).

1Actually, any c in the domain of convexity of (1− x2)2 will do, that is |uj | ≥ c > 1√
3
. We choose 3

4 as in

[Ser99b].
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By gauge-invariance, (ρεηj, A
◦
j) is also a local minimizer and thus, it satisfies (2.1). In

particular, we have

−∇⊥ curlA◦
j = ⟨iρεηj ,∇A◦

j
(ρεηj)⟩ = −(ρεηj)

2A◦
j in Ω,

which implies that

div
(
ρ2εη

2
jA

◦
j

)
= div

(
ρ2εη

2
j (A+ hexA

0
ε −∇ϕj)

)
= div

(
∇⊥ curlA◦

j

)
= 0 in Ω.

Moreover, since ρ2εA
0
ε = −∇⊥ξε, we have that div (ρ

2
εA

0
ε) = 0 in Ω. Recalling that Aj satisfies

(1.3), a direct calculation then yields

2ρ2εη∇ηj · A◦
j + 2η2jρε∇ρε · A′

j − η2jρ
2
ε∆ϕj = 0 in Ω.

On the other hand, from the first boundary condition in (2.1), we have that

∇A◦
j
(ρεηj) · ν = 0 on ∂Ω.

Recalling the boundary condition in (1.6) and that both A and A0
ε satisfy (1.3), we deduce

that

(∇ηj − i∇ϕj) · ν = 0 on ∂Ω

and, in particular, ∇ϕj · ν = 0 on ∂Ω.
Hence, ϕj solves the following elliptic PDE

(4.11)


−∆ϕj = −2

(
∇ηj
ηj

· A◦
j +

∇ρε
ρε

· A′
j

)
in Ω

∂ϕj

∂ν
= 0 on ∂Ω.

Since ηj ≥ 3
4
> 0 and ρε ≥

√
b > 0, we have, for any q > 1, that

∥∆ϕj∥Lq(Ω) ≤ C
(∥∥∇ηj · A◦

j

∥∥
Lq(Ω)

+
∥∥∇ρε · A′

j

∥∥
Lq(Ω)

)

We now estimate the terms in the RHS by interpolating between L2(Ω) and L∞(Ω). The
L∞-bounds come from our estimates for critical points of GLε in the Coulomb gauge, whereas
the L2-bounds follow from the smallness of Fε,ρε(uj, Aj), since we have

(4.12) Fε,ρε(uj, Aj) =
1

2

∫
Ω

ρ2ε
(
|∇ηj|2 + |ηj|2|Aj −∇ϕj|2

)
+ | curlAj|2 + ρ4ε

(1− η2)2

2ε2
< εβ.

First, for any q > 2, we have

∥∇ηj∥Lq(Ω) ≤ ∥∇ηj∥
1− 2

q

L∞(Ω) ∥∇ηj∥
2
q

L2(Ω)

(2.9)

≤ C(ε−1)1−
2
q

(
1

∥ρε∥L∞(Ω)

Fε,ρε(uj, Aj)

) 1
q

(4.12)

≤ Cε
2
q
−1ε

β
q = Cε

2+β
q

−1.(4.13)
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Second, for any q > 2, we have

∥∇ϕj∥Lq(Ω) ≤ ∥∇ϕj∥
1− 2

q

L∞(Ω) ∥∇ϕj∥
2
q

L2(Ω)

(2.9)

≤ C(ε−1)1−
2
q

(
∥∇ϕj − Aj∥L2(Ω) + ∥Aj∥L2(Ω)

) 2
q

(2.6)

≤ Cε
2
q
−1

(
1

∥ρεηj∥L∞(Ω)

Fε,ρε(uj, Aj)
1
2 + ∥curlAj∥L2(Ω)

) 2
q

(4.12)

≤ Cε
2
q
−1ε

β
q = Cε

2+β
q

−1.(4.14)

Hence, from (4.10), (4.13), and (4.14), we conclude that, for any q ∈ (2, 2 + β), we have∥∥∇ηj · A◦
j

∥∥
Lq(Ω)

≤
∥∥∇ηj · (Aj + hexA

0
ε)
∥∥
Lq(Ω)

+ ∥∇ηj · ∇ϕj∥Lq(Ω)

≤ ∥∇ηj∥Lq(Ω)

∥∥Aj + hexA
0
ε

∥∥
L∞(Ω)

+ ∥∇ηj∥Lq(Ω) ∥∇ϕj∥L∞(Ω)

(2.8)

≤ o(ε−1)

and ∥∥∇ρε · A′
j

∥∥
Lq(Ω)

≤ ∥∇ρε∥L∞(Ω) ∥Aj∥Lq(Ω) + ∥∇ρε∥L∞(Ω) ∥∇ϕj∥Lq(Ω)

≤ C

ε
∥Aj∥H1(Ω) + o(ε−1)

(2.6)

≤ C

ε
∥curlAj∥L2(Ω) + o(ε−1)

(4.12)

≤ o(ε−1),

where after the first inequality we used Proposition 2.1 and Sobolev embedding.
It follows that

∥∆ϕj∥Lq(Ω) = o(ε−1)

and, since q > 2, by elliptic regularity and a Sobolev embedding, we have

∥∇ϕj∥L∞(Ω) = o(ε−1).

This finally yields that∥∥A◦
j

∥∥
L∞(Ω)

≤
∥∥Aj + hexA

0
ε

∥∥
L∞(Ω)

+ ∥∇ϕj∥L∞(Ω) = o(ε−1).

Step 2 (Convexity argument) By gauge-invariance, we have

GLε(uj,Aj) = GLε(ρεηj, A
◦
j) = Eε(ρεηj, A

◦
j) +

1

2

∫
Ω

| curlA◦
j − hex|2.

Using (2.4), we have

GLε(ρεηj, A
◦
j) = Eε(ρε) +

1

2

∫
Ω

ρ2ε
(
|∇ηj|2 + η2j |A◦

j |2
)
+ ρ4ε

(1− η2j )
2

2ε2
+ | curlA◦

j − hex|2.

Let us define

Y :=
GLε(ρεη1, A

◦
1) +GLε(ρεη2, A

◦
2)

2
−GLε

(
ρε
η1 + η2

2
,
A◦

1 + A◦
2

2

)
.
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We claim that Y > 0. To prove this, let us write Y = 1
2
(Y1 + Y2 + Y3), where

Y1 =

(∫
Ω

ρ2ε

(
|∇η1|2 + |∇η2|2

2

)
−
∫
Ω

ρ2ε

∣∣∣∣∇(η1 + η2
2

)∣∣∣∣2
)

+

(∫
Ω

| curlA◦
1 − hex|2 + | curlA◦

2 − hex|2

2
−
∫
Ω

∣∣∣∣curl(A◦
1 + A◦

2

2

)
− hex

∣∣∣∣2
)
,

Y2 =

∫
Ω

ρ4ε
2ε2

(
(1− η21)

2 + (1− η22)
2

2

)
−
∫
Ω

ρ4ε
2ε2

(
1−

(
η1 + η2

2

)2
)2

, and

Y3 =

∫
Ω

ρ2ε

(
|A◦

1|2|η1|2 + |A◦
2|2|η2|2

2

)
−
∫
Ω

ρ2ε

(∣∣∣∣η1 + η2
2

∣∣∣∣2 ∣∣∣∣A◦
1 + A◦

2

2

∣∣∣∣2
)
.

By convexity, we have that Y1 ≥ 0.
Let us now provide an estimate for Y2. A direct calculation yields (see [Ser99b, Section 2]

for the details)

(1− η21)
2 + (1− η22)

2

2
−

(
1−

(
η1 + η2

2

)2
)2

=
1

16
(η1 − η2)

2(7(η1 + η2)
2 − 4η1η2 − 8).

Therefore, we have

Y2 =
1

32ε2

∫
Ω

ρ4ε(η1 − η2)
2(7(η1 + η2)

2 − 4η1η2 − 8),

which combined with 3
4
≤ ηj ≤ 1 and ρ4ε ≥ b2, yields

(4.15) Y2 ≥
b2

32ε2

(
7

(
3

4
+

3

4

)2

− 12

)
∥η1 − η2∥2L2(Ω) =

C1

ε2
∥η1 − η2∥2L2(Ω) ,

where C1 > 0 is a constant that depends on b only.
Let us now estimate Y3. A direct calculation shows that (see [Ser99b, Section 2] for the

details)

|A◦
1|2|η1|2 + |A◦

2|2|η2|2

2
−
∣∣∣∣η1 + η2

2

∣∣∣∣2 ∣∣∣∣A◦
1 + A◦

2

2

∣∣∣∣2
=

1

8
(η1 − η2)

2|A◦
1 + A◦

2|2 +
1

2
η21|A◦

1 − A◦
2|2

− 1

8
(η1 − η2)(A

◦
1 − A◦

2) (A
◦
1(2η1 + 4η2) + A◦

2(6η1 + 8η2)) .

Therefore

Y3 =
1

8

∫
Ω

ρ2ε
(
(η1 − η2)

2|A◦
1 + A◦

2|2 + 4η21|A◦
1 − A◦

2|2
)

− 1

8

∫
Ω

ρ2ε
(
(η1 − η2)(A

◦
1 − A◦

2)(A
◦
1(2η1 + 4η2) + A◦

2(6η1 + 8η2)
)
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which combined with ρεηj ≤ 1, yields

(4.16) Y3 ≥
1

8

∫
Ω

ρ2ε
(
(η1 − η2)

2|A◦
1 + A◦

2|2 + 4η21|A◦
1 − A◦

2|2
)

− 1

8

∫
Ω

ρε|η1 − η2||A◦
1 − A◦

2|(6|A◦
1|+ 14|A◦

2|).

Note that Y3 ≥ 0 if η1 ≡ η2 or A◦
1 ≡ A◦

2, which in turn yields that Y > 0. Indeed, if η1 ≡ η2,
A◦

1 ̸≡ A◦
2, we have Y3 >

1
2

∫
Ω
η21|A◦

1 − A◦
2|2 > 0. Hence, Y ≥ 1

2
Y3 > 0. On the other hand, if

A◦
1 ≡ A◦

2, then η1 ̸≡ η2, and therefore Y ≥ 1
2
Y2 > 0. For this reason, we assume from now

on that η1 ̸≡ η2 and A◦
1 ̸≡ A◦

2.
From the L∞-bound obtained in Step 1, we deduce that∫

Ω

ρε|η1 − η2||A◦
1 − A◦

2|(6|A◦
1|+ 14|A◦

2|)

≤ ∥η1 − η2∥L2(Ω) ∥A
◦
1 − A◦

2∥L2(Ω)

(
14(∥A◦

1∥L∞(Ω) + ∥A◦
2∥L∞(Ω))

)
≤ o(ε−1) ∥η1 − η2∥L2(Ω) ∥A

◦
1 − A◦

2∥L2(Ω) .(4.17)

On the other hand, using once again that η1 ≥ 3
4
and ρ2ε ≥ b, from Young’s inequality, we

deduce that

(4.18)
1

2

∫
Ω

ρ2εη
2
1|A◦

1 − A◦
2|2 +

C1

ε2
∥η1 − η2∥2L2(Ω) ≥

C2

ε
∥η1 − η2∥L2(Ω) ∥A

◦
1 − A◦

2∥L2(Ω) ,

where C2 > 0 is a constant that depends on b only. Finally, by combining (4.15), (4.16),
(4.17), and (4.18), we are led to

Y2 + Y3 ≥ ∥η1 − η2∥L2(Ω) ∥A
◦
1 − A◦

2∥L2(Ω)

(
C

ε
− o(ε−1)

)
.

Hence, for sufficiently small ε, we have Y > 0 on all cases.

Step 3 (Contradiction) Assume without loss of generality that

GLε(ρεη1, A
◦
1) ≤ GLε(ρεη2, A

◦
2).

Since Y > 0, we have

GLε(ρεη2, A
◦
2) ≥

GLε(ρεη1, A
◦
1) +GLε(ρεη2, A

◦
2)

2
> GLε

(
ρε
η1 + η2

2
,
A◦

1 + A◦
2

2

)
.

A standard argument then shows that, for any t ∈ (0, 1), we have

GLε(ρεη2, A
◦
2) > GLε

(
ρε(tη1 + (1− t)η2), tA

◦
1 + (1− t)A◦

2

)
,

which contradicts the local minimality of (ρεη2, A
◦
2). Therefore, (u1,A1) = (u2,A2), which

concludes the proof.

□
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Appendix A. Lower bound for a weighted free energy functional

Given a ball B ⊂ Ω and a function ηε : B → [
√
b, 1], we define

Fε,ηε,B(u,A) :=
1

2

∫
B

η2ε |∇Au|2 + η4ε
(1− |u|2)2

2ε2
+ | curlA|2.

In this appendix we find a lower bound for the weighted free energy functional (1.2), based on
lower bounds for Fε,ηε,B on suitable disjoint balls B that cover the “bad set”

{
|u| ≤ 1

2

}
. This

corresponds to a slightly modified version of Jerrard’s ball construction method [Jer99]. More
precisely, we will closely follow the refined ball construction method provided by Sandier and
Serfaty in [SS11], in which a lower bound is provided for each individual ball. The proofs
are mostly the same, so we will go in detail only where the presence of the weight ηε makes a
difference. In addition, the numbered constants ci, Ci will play the same role as in the proofs
in [SS11].

We start by obtaining a lower bound for an energy defined on a circle, which actually is
the cornerstone of this new version of the ball construction method. In the following, we use
the notation η2ε(Θ) := minΘ η

2
ε , for any closed subset Θ of Ω.

Lemma A.1. Let r > 0 and a ∈ Ω such that B = B(a, r) ∈ Ω. Define m = min∂B |u|.
Then, for any ε such that 0 < ε

η2ε(B(a,r))
≤ r, we have

(A.1)
1

2

∫
∂B(a,r)

η2ε |∇|u||2 + η4ε
(1− |u|2)2

2ε2
≥ c0η

2
ε(B)

(1−m)2

ε
,

where c0 is a universal constant.

Proof. We follow the proof of [Jer99, Lemma 2.3]. Within this proof, C denotes a positive
constant that does not depend on r and that may change from line to line.

Let xm ∈ ∂B(a, r) such that |u(xm)| = m and define

γ :=
1

2

∫
∂B(a,r)

|∇|u||2.

From Morrey’s inequality, we have, for any x, y ∈ ∂B(a, r), that

||u(x)| − |u(y)|| ≤ C ∥∇|u|∥L2(∂B(a,r)) |x− y|
1
2 = Cγ

1
2 |x− y|

1
2 .

Therefore, for any x ∈ ∂B(a, r) such that |x− xm|
1
2 ≤ |1−m|

Cγ
1
2

, we have

|u(x)| ≤ |u(xm)|+ Cγ
1
2 |x− xm|

1
2 ≤ 1 +m

2
.

Since r ≥ ε
η2ε(B)

, for any σ > 0, the arclength of ∂B(x, r) ∩ B(xm, σ) must be greater than

Cmin{σ, ε
η2ε(B)

}. Moreover, since (1 − |u|2)2 ≥ (1−m)2

C
whenever |u| ≤ 1+m

2
, by choosing
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σ = (1−m)2

η2ε(B)γ
, we find

1

2

∫
∂B(x,r)

η2ε |∇|u||2+η4ε
(1− |u|2)2

2ε2

≥ η2ε(B)γ + η2ε(B)2
(1−m)2

Cε2
min

{
ε

η2ε(B)
,
(1−m)2

η2ε(B)γ

}

= η2ε(B)

(
γ +

(1−m)2

Cε2
min

{
ε,
(1−m2)

γ

})
.

If ε ≤ (1−m)2

γ
, we obtain (A.1). Otherwise, we can minimize γ + K2

γ
with respect to γ,

where K = (1−m)2

Cε
. Since γ = K is a stationary point and γ + K2

γ
is convex, we conclude

that 2K is the minimum, which means γ ≥ 2K. Therefore

1

2

∫
∂B(x,r)

η2ε |∇|u||2 + η4ε
(1− |u|2)2

2ε2
≥ Cη2ε(B)

(1−m)2

ε
,

which means (A.1) holds in all cases. □

Recall the set Ωε = {x ∈ Ω: dist(x, ∂Ω) > ε}. Define S = {x ∈ Ωε : |u| ≤ 1
2
}, and SE

as the union of connected components Si of {|u| ≤ 1/2} with nonzero boundary degree. In
addition, for a compact set K ⊆ Ω such that ∂K ∩ SE = ∅, we let

degE(u, ∂K) :=
∑
i

deg(u, Si).

Applying the previous lemma, we obtain the following result.

Lemma A.2. There exists a (finite) collection of disjoint closed balls {Bi}i = {B(ai, ri)}i
such that

(1) For each i, ri ≥ ε
η2ε(Bi)

.

(2) SE ∩ Ωε ⊆ ∪iBi.
(3) There exists a universal constant c1 > 0 such that, for each i, we have

Fε,ηε,Ω∩Bi
(u,A) ≥ c1η

2
ε(B)

ri
ε
.

Proof. The proof is a slight modification of the proof of [Jer99, Proposition 3.3]. Indeed, by
noting that from [Jer99, Lemma 3.2], we have∫

Si

η2ε |∇u|2 ≥ η2ε(Si)

∫
Si

|∇u|2 ≥
η2ε(Si)

C
| deg(u, ∂Si)|,

the proof is exactly as the proof of [Jer99, Lemma 3.3], using of course (A.1) instead of the
lower bound in [Jer99, Lemma 2.3] and the fact that η2ε(Θ1) ≥ η2ε(Θ2) for any closed sets
such that Θ1 ⊆ Θ2. The constant c1 is the same as the constant c0 in Jerrard’s proof. □

From now on, we closely follow [SS11, Section 5].

Proposition A.1. For a small enough c2 ∈ (0, c1), let

λε(x) = min

(
c2
ε
,
π

x

1

1 + x
2
+ πε

c0x

)
.
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Then, for any closed ball B = B(a, r) such that B ⊂ Ωε, ∂B ∩ SE = ∅, and ε
η2ε(B)

≤ r ≤ |d|
2
,

where d = degE(u, ∂B) ̸= 0, we have

(A.2)
1

2

∫
∂B

η2ε |∇Au|2 + η4ε
(1− |u|2)2

2ε2
+

1

2

∫
B

| curlA|2 ≥ η2ε(B)λε

(
r

|d|

)
.

Moreover, Λε(s) :=
∫ s

0
λε is increasing, the function s→ Λε(s)

s
is decreasing and it satisfies

lim
s→0

Λε(s)

s
<
c1
ε
,

Λε(ε)

ε
>
c3
ε
,

for some sufficiently small constant c3. Finally, for any s ∈
(
ε, 1

2

)
and some C0 > 0 we have

Λε(s) ≥ π log
s

ε
− C0.

Proof. The proof is almost exactly as the proof of [SS11, Proposition 5.1]. In fact, the
functions λε,Λε are the same as in this proof, and since ηε ≤ 1, we have | curlA|2 ≥
η2ε(B)| curlA|2. Hence, we only need to carry around the weight η2ε(B) and mimic the

proof of [SS11, Proposition 5.1]. □

With these estimates at hand, the ball construction procedure of growing and merging
balls yields the following result.

Proposition A.2. For any s ∈
(
0, 1

2

)
, there exists a collection of disjoint closed balls B(s),

depending only on u, such that

(1) B(s) ⊂ B(t) for s < t and the total radius of the collection is continuous with respect to
s.

(2) SE ⊆ B(s), for any s.
(3) For any B = B(a, r) ∈ B(s),

Fε,ηε,B(u,A) ≥ η2ε(B)r
Λε(s)

s
.

(4) For any B = B(a, r) ∈ B(s) such that B ⊂ Ωε, we have r ≥ s|dB|, where dB =
degE(u, ∂B).

Proof. The proof follows the process of growing and merging balls described in [Jer99, Propo-
sition 4.1] and [SS11, Proposition 5.2]. Let B = {Bi}i = {B(ai, ri)} be the collection given
by Lemma A.2. We start by choosing s0 <

1
2
small enough so that the balls in B satisfy

items 3 and 4 (item 2 is obviously also satisfied). In particular, for each B = B(a, r) ∈ B we
have

Fε,ηε,B(u,A) ≥ c1η
2
ε(B)

r

ε
≥ η2ε(B)r

Λε(s0)

s0
.

We construct the collection B(s) as follows. For s ≤ s0, we let B(s) = B. Then, as s
increases, we let the radius of each ball grow so that ri = s|dBi

|. Observe that the bound of
item 3 is preserved during the growth process, which follows from (A.2) and the fact that
η2ε(Bi(s)) ≥ η2ε(Bi(t)) for s < t (since Bi(s) ⊂ Bi(t)). If at a moment two balls B1 = B(a1, r1)

and B2 = B(a2, r2) intersect each other, we merge these balls into a larger ball that contains
them with a radius equal to the sum of the radii of the merged balls. This ball can be

explicitly written as B = B
(

a1r1+a2r2
r1+r2

, r1 + r2

)
. The bound of item 3 still holds after the
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merging process, since |dB| ≤ |dB1| + |dB2| and η2ε(B) ≤ η2ε(B1) + η2ε(B2). This process of

growing and merging continues as long as (A.2) can be satisfied, that is, until s = 1
2
. □

Finally, we state our main energy estimate, which generalizes [SS11, Proposition 2.1] to
the case of a weighted Ginzburg–Landau type energy.

Proposition A.3. There exist ε0, C > 0 such that for any ε < ε0 and (u,A) such that

Fε,ρε(u,A) ≤ ε−β,

where β ∈ (0, 1), the following holds. For every r ∈ (Cε1−β, 1
2
) there exists a collection of

disjoint closed balls B = {Bi}i = {B(ai, ri)} such that

(1) {x ∈ Ωε : ||u| − 1| ≥ 1
2
} ⊆ ∪iBi.

(2)
∑

i ri ≤ r.

(3) For any 2b ≤ C ≤
(
r
ε

) 1
2 it holds that either

Fε,ηε,Ω∩B(u,A) ≥ C log
r

ε
,

or, for each B ∈ B such that B ⊂ Ωε,

Fε,ηε,B(u,A) ≥ πη2ε(B)|dB|
(
log

r

εC
− C

)
,

where η2ε(B) = minB η
2
ε and dB = deg(u, ∂B).

Proof. The proof is exactly as the proof of [SS11, Proposition 2.1]. We only need to carry
around the weight η2ε(B) throughout the argument. □

Remark A.1. Let us remark that [SS11, Proposition 2.1] states that the ball collection covers
the set {x ∈ Ωε : |u(x)| < 1

2
}, contrary to what we have written here. However, a careful

inspection of the proof reveals that the ball collection is obtained by merging with a cover of
the set {x ∈ Ωε : |1− |u|| ≥ 1

2
} given by [SS07, Proposition 4.8]. This proposition also holds

in the inhomogeneous case, since b ≤ η2ε ≤ 1, which in turn gives Fε,ηε,Ω(u,A) ≤ Fε(u,A) ≤
b−1Fε,ηε,Ω(u,A).

Remark A.2. In the situation where dB ̸= 0 for some B ⊂ Ωε, a natural choice for C is
πD̃, where D̃ :=

∑
B∈B∩Ωε

η2ε(B)|dB|. With this choice, in all cases we have

(A.3) Fε,ηε,Ω∩B(u,A) ≥ πD̃

(
log

r

εD̃
− C

)
.

Notice that this choice is possible since in this case C̄ ≥ πb > 2b. Moreover, if dB = 0
for every B ⊂ Ωε, then (A.3) still holds, since the RHS vanishes. Moreover, under the
assumptions of Proposition A.3, we deduce from (A.3) and r > Cε1−β, that

(A.4)
∑
i

|dBi
| ≤ C

Fε,ρε(u,A)

β| log ε|
,

where C > 0 is a constant that does not depend on ε.

Remark A.3. In [SS11, Proposition 2.1], C must be larger than or equal to 2. However, a
careful inspection reveals that one can replace 2 by any universal constant in (0, π) and the
argument of proof holds exactly the same. Notice that when ηε ≡ 1, πD̃ ≥ π, and therefore
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we need to be able to choose C ≥ π in order to obtain (A.3). Of course, the condition C ≥ 2
makes this choice possible, but the same holds for any constant in (0, π).

References

[AAB05] A. Aftalion, S. Alama, and L. Bronsard, Giant vortex and the breakdown of strong pinning in

a rotating Bose-Einstein condensate, Arch. Ration. Mech. Anal. 178 (2005), no. 2, 247–286.

MR2186426 ↑2, 9
[ABP03] N. Andre, P. Bauman, and D. Phillips, Vortex pinning with bounded fields for the Ginzburg-
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[BBH94] F. Bethuel, H. Brezis, and F. Hélein, Ginzburg-Landau vortices, Progress in Nonlinear Differ-

ential Equations and their Applications, vol. 13, Birkhäuser Boston, Inc., Boston, MA, 1994.
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